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Abstrmt

We report results on the uae of neural nets, and the cIoeely related “radial
baais nets”, to analyze experimental time series from ektr~ chemical systems.
We show how the nets may be used to derive ● map that describes the nonlinear
system, and how reserving an extra ‘input line” of the network allows one to
learn the system behavior dependent on ● control variable. ‘Pruning” of the
network after training appears to resultin elimination of spurious connection
weights and enhanced predictive accuracy.

Subsequent analysis of the learned map using technique of bifurcation the
ory allows both nonlinear system identification and accurate and eflicient pr~
dictions of long-term system behavior. The electrochemical system that WZM
used involved the electrodiaaolution of copper in phosphoric acid. This sys-
tem exhibits interesting low dimension dynamics such transitions from steady
stat6 to oscillatory behavior and from period-one to period-two oscillations.
This andyds provides an example of methodology that can be fruitful in un-
derstanding systems for which no adequate phenomenological model exists, or
for which predictions of system behavior given a large scale, complicated model
is inherently impractical,
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1 Introduction

Neural networks have recently been shown to be useful for nonlinear signal processing
tasks such as the prediction of nonlinear time series [11] [12] . They have superior
predictive accuracy when compared to the conventional approach to this problem
involving Volterra- Wiener expansions, and are competi iive in accuracy with other
new (and related) approaches (e.g. [7] [8] ). There is also an intense effort to build
neural nets in hardware in order to take advantage of the speed inherent in massively
parallel VLSI analog hardware. Given the new abilites of neural networks, and the
speed possible in hardware implementations, it becomes very interesting to ask what
range of useful tasks such networks could perform in the realm of nonlinear signal
processing. In this paper we discuss some recent results we have obtained in which a
neural net is ‘trained” to model the behavior of a real system dependent on a control
parameter. After training, the net can be used not only to predict the future history
of a time series from the system, but can also accurately predict qualitative changes
in system behavior as the control parameter is changed. Furthermore, bifurcation
analysis can be applied to the neural net after it is trained to perform a type of
nonlinear system identification.

In the past few years there has been considerable interest in the long range predic-
tion of chaotic time series using neural and other methods, Most of the this literature
deals with simulated data, produced for example, by numerically integrating a chaotic
nonlinear differential quation. In this paper we utilize neural networks and radial
basis networks to analyze real world experimental (electrochemical) d: ta. Further-
more, we wish to do more than predict the future values of some time series from the
system. Instead we wish to be able to predict qualitative behavior changes as a con-
trol parameter is varied and to attempt nonlinear system identification. In this early
study, we !imit the analysis to transitions from steady state to periodic oscillations
and from singleloop to double-loop oscillations. In subsquent papers we also plan
to analyze transitions to chaos. Our goal is to investigate the hypothesis that long-
term prediction of chaotic time series, while intrinsically intereating, may not be the
most practical application of these new methods. Instead, the ability to qualitatively
predict what occurs in umtrol parameter space, especially changea of stability and
bifurcations, is exceedingly relevant for important problems such as adaptive control
of nonlinear systems.

2 Electrochemical Experiments

For our pilot study we chose data from chemical reactions. Chemical reactors often
operate under unsteady conditions, This unsteady behavior can rermlt from varia-
tions in an input, such as a feed concentration, or can be caused by kinetic or thermal
instabilities in the reactor system itself, In dealing with experiments under such
conditions, one obtains a transient signal, e.g., a measurement of concentration, po-
tential, or temperature aa a function of time, One way of interpreting such signals



is by comparison to fundamental models, obtained using established theories of the
process. These models can then be used in characterization of the process, selection of
optimal operating conditions, controi etc. However, one is often faced with processes
for whi& fundamental models are tentative, nonexistent, or extremely difficult to
analyze because of their size and complexity. On the other hand, the experimentally
observed dynamic behavior may often be low-dimensional, suggesting that a small
set of ordinary differential equations could provide an accurate model of the system,
at least over the operating regime of interest.

Electrochemical reactions are known to exhibit intereating dynamic behavior. For
example, the electrodissolution of copper in acidic chloride solutions is known to
undergo several weli-defined low-dimensional transitions, such as breaking of tori,
transitions to homoclinic behavior, and period-doubling of tori [e.g. [3] [2] [1]) .
The dynamics of these systems have been investigated using several methods from
nonlinear dynamics, such as Poincare’ maps, dimension calculations, and attractor
reconstruction through time-delays (the latter proposed by Packard et. al. [13] and
by Takens [15]). We apply neural network methods to timeseries obtained from this
latter system. The experiments are performed under potentiostatic conditions, and
the current is measured as a function of time. All data were collected at 1000 Hx.
The data consisted of times series of the current (corresponding to the net rate of
dissolution) for a range of parameter values (the operating parameter is the applied
potential).

a Nonlinear !3ignal Processing

3.1 Neural Nets

The use of neura! nets for prediction of time series hae already been described else-
where citeLapedes87a [12] , Therefore in this section we briefly review the method-
ology and also describe the relation of radial basis functions to neural nets.

We wish to take a set of values of x() (where x(t) is an experimentally measured
times seria) at discrete times in some time window containing times less than t, and
use these values to accurately predict x(t + P), where P is some prediction time step
into the future. That is, we wish to construct a map from the past values of x(t)
to a future value of x(), One may also include in the domain of the map a control
parameter, and hence determine the effect of the control parameter on the range of
future behavior.

Our goal is to use backpropagation, and a neural net, to construct a function

o(t +P) = j(ll(t),lz(t - A)...1~(t - mA), E) (1)

where O(t + P) is the output of a single neuron in the Output layer, and II ~ 1~
are input neurons that take on values z(t), z(t - A), ., z(t - rnA), where A is a time
delay. E is the value of the control parameter and has a separate input Iinei O(t + P)
takea on the value x(t + P), We chose the standard feedforward network configuration
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with synaptic weights Tij, thresholds Oi, a~d two hidden layers inserted between the
input

while
A

and output layers. The hidden layers use the usual sigmoidal transfer function

)

the output neuron’s transfer function is linear.
training set may be constructed by selecting a set of input values:

I, = 4%)

12= z(tp - A)

(2)

(3)

(4)

Im = Z(tp - r’ml) (5)

with associated output values O = x(tp + P), for a collection of discrete times that

are labelled by tp. Thus we have a collection of sets of {lP), 1$’),. . . J$);O(P)} to use

in training the neural net. This procedure of using delayed sampled values of x(t)
can be implemented by using tapped delay lines, just as is normally done in linear
signal processing applications, ([16]). The training procedure (backpropagation) is a
straightforward nonlinear extension of the linear Widrow Hoff algorithm. The network
is trained using nonlinear least squares. This gives values of Tij and Oi that minimize
the sum of squares of the differences between the predicted and measured values of the
output sampled over the entire times in the training set. A conjugate gradient method
was used for the minimization. The calculations were carried out on the 64,000
processor Connection Machine at Los Alamos. At every iteration of the conjugate
gradient method, we simulateously evaluate the prediction of the current net for
every point of the training time series. Individual processors evaluate the predicted
output for individual points in the time series, thus exploiting the massively parallel
architecture of the CM-2. In earlier work ([11] [12]) we showed that the extension
of the Widrow Hoff procedure to the Voltmra Wiener polynomial expansion in an
attempt to perform nonlinear prediction is significantly inferior to the method using
sigmoids described above.

Neither m nor A has been specifeci so far, nor have we given any indication why a
formula like Eqn. (1) should work at all, Important work of [13] and [15] shows that
for flows evolving to compact attracting manifolds of dimension d~, that a functional
relation like Eqn. (1) does exist, and that m lies in the range dA < m+l < 2dA + 1.
We choose m=3, Takens provides no information on A and we chose A from the first
minimum of the mutual information [9]. Takens theorem gives no information on the
form of fo in Eqn. (1). In earlier work however , we showed that neural nets provide
a robust approximating procedure for continuous fo.

After the iterative optimization procedure has converged (not necessarily to a
global minimum), we have an explicit nonlinear map

Z!n+,= f(zn, zn-,,. . .Zn-m) (6)
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where m is the number of delays chosen and Zmis the value of the time series at the
ntk discrete time sample. By “bootstrappingn the net into the future, this map can
be iterated to give

%+, = f(f(%, Z?a-,, . . . %-m),%%-,, . . . ,Gt-m+*) (7)

or, using an m + 1 dimensional vector Xm s (zfl, Zn-l, . . . zn-~ )* we can define the
map

X.+1=F(xn) (8)

In this formalism, a measurement or a prediction in the time series beccmes a phase
point in an m + l-dimensional space, with coordinates the present value and the
n - m + 1 previous values. Trajectories in phase space approach an attmctor as initial
transients die out. Comparing the attractors reconstructed using time delays from
the original time series, and the attractors resulting from iteration of Eqn 8 is a useful
evaluation of the long-term predictive capabilities of the network.

We have incorporated the dependence of the map 8 on the operating parameter by
simply reserving one of the neural network inputs for the value of the fixed potential,
i.e., we let

Z*+1 = F(zn, f?) (9)

Eqn 8 can now be used to perform stability and bifurcation analyses of the system
aa the operating parameter varies. A comparison of experimental and predicted bi-
furcation diagrams can give insight into specific dynamic instabilities of the system,
and can be useful in designing experiments to elucidate their nature.

3.2 Radial Basis Functions

The purpose of the above analysis is to obtain a nonlinear input-output map which,
given the operating parameter values, the present measurement, and some recent
history, will predict the state of the system at the next time step. The resulting
map can be used for short-term prediction of the time series. Even in the long-
term, however, the map can be used to generate the system attractor(s), and perform
stability and bifurcation analysis of the system behavior. Sigmoi&d .:eural nets are
only one way to obtain this map. In the last few years several techniques for obtaining
such maps for nonlinear dynamical systems have been proposed (e.g. [4], [5], [6] [11],
[7]). Research efforts have focused mainly on time series prediction, rather than
system identification.

A second technique we used for obtaining the map was radial baais function
approximation [14]), first used for prediction of time series by Casdagli ([5]). This
is an interpolation method that is linear in the relevant weighting coefficients (the

analog of the synaptic weights of the neural net), but uses basis functions that are
nonlinear in the training data. It ~,ay be briefly summarized by saying that it replaces
the polynomial basis of Gabor ([10]) with the radial basis of Powell [14]. Radial basis
functions are basically localized bumps (in distinction to polynomials that are delo-
calized and blow up at infinity), and an attempt to approximate a multidimensional
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function by radial basis functions may intuitively be viewed as analogous to approxi-
mating a one dimensional curve by adding together a number of suitably placed and
scaled Gaussian bumps. The localization is presumably why the radial method per-
forms better under iteration than the polynomial basis. The method specifies placing
the bump over each training point, which leaves only the am-ditude of the bump
(which appears linearly) to be determined. Therefore this method does not suffer
from a local minima problem although the set of linear equations to be solved may
become ill-conditioned for large data sets, resulting in another set of problems for
radial basis nets. The radial basis expansion may be written

Oi= ~~jfj(Xi) (lo)
i

where aj is the linearly appearing adjustable coefficient and ~j(Xi) is the localized
radial baais function

~j(Xl) = exp - (lXi - Xj12/U2) (11)

Xj is an m + 1 dimensional vector formed from the delayed values of the time series.
sigma controls the falloff of the Gaussian.

The radial basis method is also related to the operation of a two hidden layer
backpropagation neural net. .4s shown in [11] [12] synaptic weights can be found
for a two hidden layer back propagation network so that localized bumps can be
constructed by the net, and this was suggested u one possible explanation as to
how neural nets may perform function approximation. The suggestion was also made
that a linear sum of Gaussian bumps might be an effective formalism for prediction,
The connection to radial basis functions was unknown to us at that time. Therefore,
neural nets can be viewed in one sense as an extension of radial basis nets in which not
only the amplitude, but also the width and position, of the bumps may be adjusted.
of course this extra generality pays a price in the nonlinear optimization that is
necessary.

There is another type of radial basis function, which although finite at infinity is
actually incrwwing locally [14]. This rudiully incrmuing function may be taken to be
simply the distance of a point to a training set point. To maintain localization and
avoid blowups at infinity one places the additional constraint that the sum of the
coefficients must be zero. This other type of radial baais expansion may be written

Oi = a~ + ~Ojfj(Xi) (12)
J

where aj is the linearly appearing adjustable coefficient, a. is an additional coef%cient
specifying the value at infinity, s, (X, ) is the increasing radial basis function

fJ(xl) = l~i ‘Xjl (13)

and there is the further global co~.straint that imposes a finite solution at infinity
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We found (although the point WaS not intensively investigated) that radially increas-
ing basis functions led to better prediction.

It is also possible to view radial basis function approximation as a kind of net-
work that employs neurons with an non-sigmoidal transfer function. This interpre-
tation should not be confused with the connection to backpropagation mentioned
earlier. In this new interpretation, the network is of the simple “perception” type
and does not involve hidden layers. The output neuron is linear. The required in-
formation for our problem is again available on the input layer as the present value,
two time-delayed values and the parameter value. However, this information is pre-
processed in the following manner: we calculate the distance (in the four dimensional
(phase) x(parameter) space) of the present point from a data point. Using k data
points from the original time series, we thus calculate k distances. These k distances
are the inputs to the k neurons of the single layer of the network. The output (the
predicted value of the current at the next time step) is then given by a linear combi-
nation of these k distances. Because of the simple, linear dependence of the output
on the synaptic weights, training this network is a linear least squares problem, which
can be solved using singular value decomposition. Alternatively, one can also use a
conjugate gradient method to ‘train” the network (i.e. determine the coefficients).

3.3 Pruning

Networks with an excess of adjustable parameters may be expected to tune to experi-
mental noise, and therefore although the training set is captured essentially perfectly,
the prediction on new data may be poor. This is analogous to the classic “overfit”
problem in curve fitting with high degree polynomials. The problem can be particu-
larly severe in radial basis nets, where there are the same number of adjustable pa-
rameters as training points. A simple, yet effective, heuristic to eliminate or “prune”
unnecessary parameters may be invoked. At a demred point in the training process
(we usually chose the end of training) one tests each weight in turn to determine
its contribution to overall error. The test is performed by temporarily eliminating
that weight (setting the value to 0,0) and calculating the change in the average error
over the training set. The weight that causes the least change in the average error
is selected as the lead important weight. This weight is now permanently set to 0.0,
and the network ret rained from this configuration. At the end of training the process
is again repeated on the new system that has N - 1 weights. The process terminates
when weights are deleted giving unacceptable increases in the average error. Typical
reductions in the number of weights is by a factor of 10 ( e.g. 5001 weights to 42
weights). In certain runs we found that the “pruned” network seemed to be a better
predictor than the unpruned network. This is presumably due to the pruning acting
as type of smoothing or noise filter. This effect is under investigation and detailed
results will be presented elsewhere,
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4 Results

We first describe an example of using the two-hidden layer network approach. This
network was trained on two experimental time series, the first at a potential of 788mV
yielding a single peak oscillation, and the second at a potential of 769mV yielding a
double peak oscillation. The resulting pruned network was capable of predicting both
the single and the double-loop oscillations at the corresponding parameter values.
Figures la and lb show the experimental transients at 769 and 788mV respectively,
including a relatively long startup period. Figu m lC and ld show tw-dimensional
projections of the phase portraits reconstructed using two time delays (of 10 and 20
sampling periods respectively). Figures le and lf show the same projection of the
phase portraits of the attractors predicted by the pruned neural network. Although
not shown in the figure, short-term prediction of the time series is excellent. What
we see in this figure is that the network can also capture semi-quantitatively the
asymptotic, long-time system behavior (i.e. its attractors).

The behaviors shown in Figures la and lb are far removed in parameter space
from each other (i.e. there is no simple bifurcation between the two states). We now
discuss a series of transitions which occur in a well-defined manner as the parameter is
changed. Figures 2a, b and c show experimentally determined attractors for potential
valuea of 748mV (steady state), 758mV (a triangular shaped oscillation) and 759mV
(a double-loop oscillation) respectively. Experimental time series at intermediate
parameter values (a total of eight time series between 748mV and 763mV) indicate
that the transitions we observe are most probably a Hopf bifurcation to a limit cycle
followed by a simple period-doubling. For this set of eight time series, we obtained
our best results using the pruned radial-basis network. Again, it is important to note
that the parameter is part of the fitting, since the radial distances which constitute
the input to the network are calculated in the four-dimensional series in the period-
doubled regime (V = 759mV). We see again that short term prediction of the time
series itself is very good, but prediction accuracy deteriorates aa the map gets iterated
farther into the future (notice the shift in peaks towards the end of the time series
segments shown). Nevertheless, the nature of the tw-peaked oscillation (double-
looped attractor) is retained here, as it waa in Figure lf. Finally, in Figures 2f and
2g we include the experimental and computational bifurcation diagrams respectively.
For the oscillatory branches we plot the maximum and minimum of the oscillations.
Since the fitted map is available in closed form, using numerical techniques we can
find both stable and unstable solutions, quantify their stability and accurately detect
bifurcation points (we have included the predicted unstable steady state in Figure
2g).

5 Concluding Remarks

The results presented here constitute our initial attempt to apply neural network
analysis to chemical reaction data. These initial examples involvsd relatively simple
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dynamic phenomena. Themethods however, should reapplicable to more complex
dynamic behavior, and the extension to incorporate the dependence on more than
one parameters is straight forward. It appears that this approach is indeed capable
of producing accurate nonlinear dynamic models of processes exhibiting low-order
dynamics (this does not necessarily mean simple dynamics!). Predictive models can
be used to simulate and/or control a process. We should mention that the training in

our examples was performed off-lirie, i.e. the time series were first obtained, and the
training was performed subsequently. On-line training however is also possible, and
the development of special purpose hardware for such neural network configurations
can find use in real-time chemical process identification and cent rol (see for-example
[17]0
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Figure 1: (a-b): Experimental memurements of electrodismlution current vs. time
at 769mV and 788mV respectively, (c-d): The same transients plotted in delay
space, leading to a double-loop (769mV, 2c) and a single loop (788rn V,2d) attractor.
The long straight segment corresponds to the startup part of the transient. (e-f):
Attractors predicted by a two hidden layer network.
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Figure 2: (a,b,c): Phase portraits reconstructed in delay space using experimental
meawrermnts at 748mV, 7S&nV and 759rnV r-pectively. Segments of time series at
759mV: experimental (d), and predicted by iterating a pruned radial basis function
network (e). Bifurcation diagrams: experimental (f), and predicted using the same
radial basis function network (g).
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